人工光合作用让二氧化碳“变废为宝”

《自然》发表邓鹤翔、昝菱教授课题组研究成果

    期次:第302期    作者:通讯员化苑

项目主要成员合影,从左至右依次为昝菱、徐晓晖、邓鹤翔、江卓,金鑫摄


  本报讯(通讯员化苑)格林威治时间9月9日,《自然》(Nature)在线发表了我校在人工光合作用领域的最新研究成果。该研究系统探究了MOF介孔孔道定制TiO2生长的理论机制,最终实现了半导体纳米材料在MOF中的无损填充。两种材料特性的高效协同,将拓展出一系列新型的人工光合作用催化剂。

  该论文题为“二氧化钛在金属有机框架中介孔的填充及二氧化碳光还原”(Fillingmetalorganicframework mesoporeswith TiO2 forCO2 photoreduction)。第一署名单位为武汉大学,化学与分子科学学院博士后江卓和2015级博士徐晓晖为共同第一作者,我校邓鹤翔、昝菱教授,上海科技大学OsamuTerasaki教授为共同通讯作者。
  通过人工光合作用将二氧化碳还原成有利用价值的化学产品不仅能够为能源危机提供新的解决方案,而且能够有效减少生态环境中二氧化碳的含量。然而,人工直接光还原二氧化碳的效率目前很难超过植物(全光谱下0.5-5%),且往往需要牺牲剂的辅助,而不是像植物一样释放出氧气。
  邓鹤翔课题组从材料的合成角度出发,创造性地探索了在介观尺度上(2-50纳米),无机半导体纳米颗粒和金属有机框架孔道界面的分子定制,实现了单波长光驱动下CO2还原11.3%的表观量子产率,并观察到等当量O2的释放。此分子定制界面的构筑类似于叶绿体中光催化基元的局域化,所设计出的多种“分子隔间”能够实现二氧化钛纳米颗粒化学环境的精准定制,从而大幅提高光生电子的分离和利用。CO2光还原实验表明,TiO2与MOF骨架所构筑的三维有序结构(TiO2-in-MOF)的光催化活性远高于同尺寸的TiO2纳米颗粒及MOFs表面负载的TiO2,充分展示了“分子隔间”的结构优越性。两种材料特性的高效协同,将能拓展出一系列新型的人工光合作用催化剂,有望推动在光吸收波长范围以及量子产率上的更大突破。
  在此工作开展的六年半时间内,江卓和徐晓晖直面“纳米功能材料连接、排列及取向的定制”这一关键科学挑战,通过反复尝试和不断优化,系统探究了MOF介孔孔道定制TiO2生长的理论机制,最终实现了半导体纳米材料在MOF中的无损填充。